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SUMMARY 

In the conventional quasi-geostrophic form of the 'omega'cquation, the forcing of vertical velocity is 
usually expressed as the sum of two terms associated respectively with vorticity and temperature advection. 
Consideration of each term in isolation is misleading and there can be a large degree of cancellation. On the 
other hand, in Sutcliffe's development theory, this forcing is, in effect, represented by a single term. However, 
this is achieved at theexpense of neglecting another term which is dominant in frontal regions. An investiga- 
tion, based upon the governing equations, of the manner in which geostrophic balance tends to destroy 
itself, reveals a simple, concise, one-term representation of the geostrophic forcing of ageostrophic motion. 
Many of the traditional synoptic rules are then simple deductions from this theory. An application of the 
theory in the case of a rapidly developing system is demonstrated using a 700mb chart. 

1. INTRODUCTION 

In 1947 Sutcliffe produced his theory of development. He derived, subject to a series 
of approximations, an expression for the difference between the horizontal divergence at 
two levels, and obtained criteria for upward motion. Much of the present-day reasoning 
employed by synoptic meteorologists and forecasters follows from Sutcliffe's work. About 
the same time, Charney (1947) and Eady (1949) were producing their theories of baroclinic 
instability. The quasi-geostrophic theory that they used has been, perhaps, the cornerstone 
of modern dynamical meteorology. Implied in this theory is an equation for the vertical 
velocity - the w-equation. 

We thus have synoptic and dynamic versions of a vertical velocity equation applicable 
to large- and medium-scale mid-latitude flow. The purpose of this paper is to show how the 
o-equation can be written in a simpler form that may easily be interpreted on the 
synoptician's chart, and also to point out the connection with the more approximated 
development theory of Sutcliffe. 

2. THE CONVENTIONAL QUASI-GEQSTROPHIC WEQUATION AND ITS DRAWBACKS 

It is convenient to use a pressure-type vertical coordinate z ,  = (R8,/QK)(l -(p/po)"), 
which is little different from physical height in the lower troposphere (actually the same as 
physical height in an atmosphere with a dry adiabatic lapse rate) and simplifies the thermal 
wind relation. O0 and p o  are standard values of potential temperature and pressure. R is 
the gas constant, and K = R/c,. The Boussinesq adiabatic equations may be written (see 
Hoskins and Bretherton 1972) 

Du/Dt-fv+a&ax = 0 

 opt +fu + a4/ay = o 

aulax + aqay  + awlaz = o 
w a z  = (d4Je. 

DB/Dt = 0 
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Here, 4 is the geopotential, and for the present we take the Coriolis parameter,f, to be 
constant. The synoptician, accustomed to working with height fields at given pressure levels, 
may note the close correspondence of this set of equations with the more usual pressure 
coordinate formulation of the primitive equations. 

The geostrophic velocities are u, = -(l/f>(a+/dy) and u, = (l/f)(dq5/dx) ; and the 
thermal wind relations -f(au,/az) = (g/O,)(aO/dy) and f (au, /dz)  = (g/O,)(dO/ax) . Defining 
the geostrophic vertical component of relative vorticity, to, as au,/ax - du,/dy, we have 

f(at,/W = (sPo)V@ (1) 
The forms of the vorticity and temperature equations at the level of quasi-geostrophic 

theory are (a/& + V,.V)C, = f d w / d z ,  and (a/& + V,.v>O = - w dO/dz , where O(z) is a 
standard potential temperature distribution with squared buoyancy frequency, 
N’, = (g/Oo)(dO/dZ). Eliminating the time derivative using Eq. (1) gives 

For our system of equations this is the form taken by the usual o-equation. The forcing 
of vertical motion is by the vertical derivative of vorticity advection (term d)  and the 
horizontal Laplacian of thermal advection (term 9). 

The drawback of this form for the forcing is that there can be large cancellation 
between the two terms. Mathematically, the term fV,.V(dt,/az) can be seen to cancel 
between them. Adding a speed U on to the whole system alters the extent of this cancella- 
tion and thus the relative magnitudes and phases of the two terms, but not their resultant. 
Individually the terms are not ‘Galilean invariant’. The effect of each term in isolation can 
be misleading in attempting to diagnose the magnitude and even the sign of the vertical 
velocity. 

A simple example of these difficulties is given by the most unstable Eady baroclinic 
instability mode, independent of the latitudinal direction, on a total wind shear AU. For 
the case when the surface wind, Uo, is zero, the phases and amplitudes of the terms d and A? 
and their resultant 41 are given in Fig. 1. d and W are in phase at the surface, but their 
phase difference is more than 100” at the mid level and 150’ at the top. The amplitudes 
show the terms d and W to be equal at the surface but elsewhere in the lower half W is 
dominant. A change in the surface wind produces different phases and amplitudes for 
d and W, though not for 41. For example, taking Uo = -AU/4 gives I d I N 2.) I W I at 
the surface and makes d dominant in the lower levels. Uo = + AU/4 gives I W I N 24 I d I 
at the surface. 

The difficulty associated with the cancellation between d and W is made worse by the 
fact that d involves differentiation in the vertical and W is a horizontal Laplacian. In prac- 
tical situations, confident qualitative determination of the resultant forcing of vertical 
velocity probably requires at least semi-quantitative calculations involving variables at 
more than one level of the atmosphere. 

3. COMPARISON WITH SUTCLIFPE’S THEORY 

One may easily repeat the work of Sutcliffe using continuous representation 
in the vertical rather than two layers. Instead of Eq. (2) one would obtain 

f2 (a2w/dz2 )  = 2f(aV,/dz).Vt,. Assuming that d2w/dz2 and w are of opposite sign, this form 
predicts upward motion whenever the thermal wind is directed towards decreasing 

For simplicity, Sutcliffe omitted adiabatic cooling and warming in the thermodynamic 
vorticity. 
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equation and so the term N2V;w does not occur on the 1.h.s. This is probably not serious 
for qualitative interpretation provided that the forcing is approximately sinusoidal with 
length scale greater than or equal to the Rossby radius of deformation J a R ,  = N H / f  
where H is a vertical height scale. 

Sutcliffe reduced the forcing to just one term, but at the expense of neglecting forcing 
terms which may be written 

Here D, ,  D,  are the geostrophic deformation components: 

D ,  = au,/ax = - aue/ay, D ,  = $(au,/ax + au,/ay). 
If the dilatation axis is at an angle a with a fixed axis, and the magnitude of the total 
deformation is D ,  it can be shown that G = - 8fDz(aa/az). Thus the omitted term depends 
on the presence of deformation and on the rotation of the dilatation axis with height. 
As Sutcliffe pointed out, this term is certainly important in frontal regions. Indeed for the 
classical confluence frontogenesis model it is the sole forcing of vertical motion. If the 
direction of the thermal wind is almost independent of height then the advection of the 
thermal pattern may be determined from the surface flow and, even in regions of large 
deformation, the omitted term may be negligible. 

We may note that the Sutcliffe form for the forcing is exact for the two- 
dimensional Eady wave discussed in the previoua section. The resultant forcing is 
9 = 2f(AU/H)(a2u/ax2). This is in agreement with Fig. 1 and, for a given shear AU, is 
clearly independent of the surface wind U,. 

A phases 

r, \ 

\ 

arnpli ludes 

Figure 1 .  Phases and amplitudes of the forcing terms in the o-equation for the most unstable Eady wave 
independent of y and for zero basic ZOMI flow at the ground. The phases are shown in an x,  z cross-section 
with the positions of the pressure low and high at each level also indicated. The vorticity advection term, 
d, the thermal advection term, L!# (see Eq. (2)), and the resultant of the two, 8. have their maxima and 
minima indicated by + and -. Positive forcing may be associated with downward motion and negative 

forcing with upward motion. 

4. A REDERIVATION OF THE O-EQUATION 

In order to derive a form of the o-equation that is easily applicable to synoptic cases, 
we shall first consider the tendency of geostrophic motion to destroy thermal wind balance. 
For consideration of the balancef(au,/dz) = (g/O,)(dO/ax), we use they equation of motion 
and the potential temperature equation at the level of approximation of quasi-geostrophic 
theory : 

(a/at+v,.v)t++fu,, = o and (a/at+v, .v)o+w(dO/dz)  = o . (3) 
If the ageostrophic motion (use, w)  is for the moment neglected, it is easily shown that 

(a/at+v,.vXs/e,Xae/ax) = -(a/at +v,.v),qav,/az) = Q ~ ,  
where Q1 = -(g/O,)(i?V,/ax).VO. 
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Thus, in relation to a fluid particle moving with the geostrophic flow, we see that 
geostrophic motion destroys itserf by changing the two parts of the thermal wind balance 
equally but in opposite directions. 

In quasi-geostrophic theory, the role of ageostrophic motion is to restore thermal 
wind balance which the geostrophic motion is tending to destroy. If we now consider the 
ageostrophic terms also in Eq. (9, eliminating the time derivatives gives 

~ z ( a ~ / a x )  -p(au,/az) = 2 ~ ,  . (4) 

Geostrophic balance is restored by differential vertical motion tending to change the 
horizontal temperature gradient and differential ageostrophic horizontal velocity tending 
to change the vertical derivative of the horizontal wind. Thus for Q, positive one would 
usually expect geostrophic balance to be maintained by upward motion increasing with x ,  
and by ageostrophic x velocity decreasing with height. It is possible that one of these 
processes could be of the opposite sign because of the three-dimensionality of the flow, 
but this would have to be compensated by larger values of the other process. Thus a 
simplified form of Eliassen's (1962) cross-frontal circulation theory is applicable even when 
the flow is three-dimensional. 

One may describe the geostrophic forcing as direct if it tends to result in warm air 
rising, cold air descending and horizontal motion towards low pressure. Thus a forcing is 
direct if, following a fluid particle moving with the geostrophic velocity, the geostrophic 
motion tends to increase a pre-existing temperature gradient or, equivalently, if it tends to 
decrease the vertical shear in the horizontal geostrophic wind. It is indirect if the geostrophic 
tendencies following a fluid particle are of the opposite sign. 

To obtain the full three-dimensional ageostrophic motion we must write they equation 
equivalent to Eq. (4) and the continuity equation. The full set is: 

N 2 ( a W / a X )  -l(au,/az) = 2 ~ ,  

jv2(aw/ay) -j-(aua,/az) = 2 ~ ,  . ( 5 )  
au,,/ax + au,,/ay + aw/az = o 

where Q = (QI, QJ = (-(s/'~)(av,/ax)*ve, -(s/eOXavg/ay)*ve) 9 (6)  

N 2 v ; W + j 2 ( a 2 W p z 2 )  = 2 v . ~  . (7) 

Eliminating the horizontal ageostrophic velocities gives the vertical velocity equation 

This may be shown to be exactly equivalent to the usual form of the o-equation (Eq. (2)). 
The 1.h.s. is identical, but the two terms on the r.h.s. have been combined in a rather 
suggestive manner. 

In quasi-geostrophic theory, on an ,f-plane vertical velocity is forced solely by the 
divergence of Q. 

Q is a constant times the vector rate of change of horizontal potential temperature 
gradient on a fluid particle implied by the geostrophic motion alone. For ease of under- 
standing and application, to determine Q at a point we may take rectangular Cartesian 
axes with the x axis tangential to the potential temperature contour at that point and the 
y axis pointing towards colder air. Then aO/ax = 0, and Eq. (6) becomes 

Q = { - ( g / e o X a u g / a x X a e / a ~ )  9 -(s/e~)(au,/aY)(ae/aY)} (8) 

The two simple motions illustrated in Fig. 2 show how in this coordinate system Q, is related 
to the horizontal shear and Q2 to the diffluence or confluence of the geostrophic motion. 
For application to synoptic situations we note that Eq. (8) may be written 
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Figure 2. Illustration of the forcing terms when the potential temperature (dashed contours) is a function 
of y only with positive y pointing towards colder air. The motion is shown by light arrowed lines and Q by 
heavy arrowed lines. (a) Horizontal shear: v, an increasing function of x only. Q1 is positive and Q2 zero 

(b) Confluence: v, a decreasing function of y only. Ql is zero and Q2 negative. 

Q (1IL)Vv, (9) 
where L is the separation of potential or actual temperature contours. 

For horizontal length scales large compared with the Rossby radius, LR , the 1.h.s. of 
Eq. (7) is donunated by the second term. This implies that the vertical shears in the wind 
are adjusted by the ageostrophic flow to match the changes in the thermal gradient implied 
by the geostrophic flow. For horizontal length scales comparable with L R ,  both the wind 
and thermal fields are adjusted by the ageostrophic flow. 

Before discussing application of these results to synoptic situations, for completeness 
we include the variation of the Coriolis parameter with latitude as modelled by the usual 
/I-effect. This gives an extra forcing term in Eq. (7): /If(au,/az) = /I(g/OO)(i38/dx), and 
corresponds, in the northern hemisphere, to ascent in the northerly thermal wind westward 
of a thermal trough and descent in the southerly thermal wind eastward of it. Taking a 
vertical difference in the north-south wind of 20ms-’ over a tropospheric depth 
H - 10km and approximating the 1.h.s. of Eq. (7) by a2f2w/HZ gives vertical motion of 
the order of 3 cms-’ for mid-latitude values off and /I. 

5. APPLICATION TO THE UNDERSTANDING OF SYNOPTIC SITUATIONS 

As is customary for qualitative application, as a first approximation we may assume 
that regions where Q is divergent (i.e. NzViw +f2(azw/az’) > 0) correspond to descent. 
This implies shrinking of columns below, and the creation of anticyclonic vorticity. 
Similarly below regions where Q is convergent cyclonic vorticity is created. 

Returning to Fig. 2(a), Q is convergent for x positive and divergent for x negative. 
We thus expect the ‘northward’ moving air to ascend and the ‘southward’ moving air to 
descend. In Fig. 2(b), Q is convergent in the warmer air and divergent in the colder air. 
The warmer air is therefore predicted to ascend and the colder air to descend. 

Standard meteorological situations provide a good illustration of the application of 
the theory described in this paper. In Fig. 3(a) are shown the height contours for the 
entrance and exit of a jet. Clearly, in the entrance region, cross-stream gradients in 
potential temperature on a fluid particle would be enhanced on the assumption of 
geostrophic motion. Thus the Q vectors are approximately as indicated. Q is divergent 
on the left (looking along the flow) and convergent on the right, implying downward 
motion and the creation of anticyclonic vorticity below on the left side and upward motion 
with the creation of cyclonic vorticity below on the right. In the exit region, the geostrophic 
motion tends to weaken the cross-stream temperature gradient which forces the creation 
of cyclonic vorticity below on the left, and anticyclonic on the right. In the special case 
that temperature contours are almost identical with height contours this case can be 
correctly diagnosed using the Sutcliffe development theory (Sutcliffe and Forsdyke 1950). 
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a b 

Figure 3. Two standard synoptic situations. (a) The height contours for a jet entrance and exit. (b) Tem- 
perature contours in a diWuent trough. Horizontal shears in the geostrophic velocity field are assumed to be 
dominated by the thermal wind contribution. 

The arrowed lines indicate estimated Q vectors. Convergence and divergence of Q are given by - and +. They indicate the forcing of upward and downward motion respectively. 

In Fig. 3(b) are shown typical tropospheric temperature (or 1000-500mb thickness) 
contours for a diffluent trough. Assuming that low-level horizontal velocity shears are 
negligible, higher in the atmosphere velocity shears may be deduced from the thermal 
wind. The Q vectors must be approximately as shown. The strong convergence implies 
the forcing of cyclonic vorticity below in the cold air. The weaker divergence implies 
smaller generation of anticyclonic vorticity below in the warm air. 

Finally we show a chart (Fig. 4) for an actual synoptic situation at OOGMT on 

Figure 4. The 700mb chart of height and temperature contours for the Great Plains region of N America 
at 000m on 10 Nov. 1975. Height contours. every 3 decametres, are shown by continuous lines; temperature 
contours, every 4degC. are indicated by dashed lines. The surface pressure minimum was W m b ,  centred 
near Des Moines, Iowa (indicated by D). A surface frontal analysis is also marked. Estimates of the vector 
Q are given. 12 hours later the surface pressure minimum was 981 mb centred near Marquette, Michigan (M). 

10 November 1975 when a major system was developing over the Mid-West of North 
America. The 700mb level was chosen both because it should give a good indication of 
the forcing of vertical velocity in the lower half of the atmosphere, and because the crucial 
cross-isentropic component of velocity is not masked by large ‘thermal’ winds. The surface 
pressure minimum at this time was 994 mb. Its position, and a frontal analysis, are indicated 
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in Fig. 4. The closed vortex in the height field leads to Q vectors approximately along the 
isentropes. The temperature gradient in the cold-frontal region and the strong tendency 
to increase this gradient leads to large magnitude vectors oriented approximately as shown. 
Estimates of other smaller magnitude vectors are indicated. We thus expect a vigorous 
cold-frontal circulation with ascent at the surface front and strong descent behind, and 
general rising motion in the warm air ahead of the system. This is in agreement with 
pressure rises larger than 6mb in 3 hours behind the cold front, severe storms including 
tornadoes at the cold front, and in 12 hours the surface pressure low deepening to 981 mb 
and moving to the position indicated. The region of the analysed warm front does not 
contain large forcing of vertical motion but appears to be connected more with the saturated 
ascent ahead of the system. 

6. FINAL COMMENTS 

The work described here is not a new theory, but merely an attempt to draw together 
the theories on the forcing of ageostrophic motion and vertical velocity which are used in 
dynamical and synoptic meterology. By writing the forcing term in a new way, it has been 
possible to infer the synoptic distribution of vertical velocity by consideration of a height 
and temperature field chart at a constant pressure level. The intention has not been to 
discount the usefulness of the Sutcliffe development theory, but rather to examine the 
error involved in the theory and to describe how more accuracy may be obtained without 
much more complexity. 

We have applied quasi-geostrophic theory even in regions of large vorticity where it 
is not strictly applicable. In a subsequent paper (Hoskins and Draghici 1977) it will be 
shown that, in such regions, only slight modification of the ageostrophic velocity equations 
(Eqs. (5)-(6)) is required. 

Although weather forecasting is now dominated by the products of numerical models 
it is hoped that the work described here is of practical relevance. For initialization 
procedures it is essential to know the ingredients that produce the vertical velocity field 
and development. Such theories are also useful for evaluating the numerical product, 
particularly in its underestimation of ‘the weather’ on the frontal scale. 
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