
AOS	452	–	Lab	13	Handout	
Upper-Level	Frontogenesis	and	Sawyer-Eliassen	Circulations	

	
Introduction	
	
As	we	discussed	in	class,	fronts	are	locations	at	which	we	cannot	ignore	the	effects	of	
ageostrophy.	Furthermore,	we’ve	discovered	that	an	ageostrophic	secondary	circulation	
must	accompany	a	change	in	the	magnitude	of	the	horizontal	temperature	gradient.	It	turns	
out	that	these	ageostrophic	secondary	circulations	can	be	diagnosed	directly	via	the	
Sawyer-Eliassen	Circulation	Equation.	This	equation	emerges	from	a	consideration	of	
across-front	ageostrophic	motions	and	is	applicable	to	a	wide	variety	of	atmospheric	
phenomena,	including	jets	and	frontal	boundaries.	This	lab	will	explore	the	process	of	
upper-level	frontogenesis	as	analyzed	from	the	Sawyer-Eliassen	perspective.	
	
Sawyer-Eliassen	Circulation	Equation	
	
A	particularly	useful	way	to	interrogate	the	vertical	circulations	associated	with	jet-front	
structures	is	afforded	by	employing	the	Sawyer-Eliassen	Circulation	Equation	(Sawyer	
1956,	Eliassen	1962):	
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where	M	is	the	absolute	geostrophic	momentum	(M=Ug-fy),	
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ψ 	is	the	Sawyer-Eliassen	
streamfunction,	

€ 

Qg 	is	the	geostrophic	forcing	function,	and	

€ 

γ 	is	a	thermodynamic	constant.	
The	coordinate	system	is	defined	such	that	the	x-axis	points	in	the	along-front	direction	
and	the	y-axis	points	in	the	across-front	direction	into	the	colder	air.	The	final	term	on	the	
right-hand	side	of	the	equation	is	the	diabatic	forcing	term	and	will	not	be	included	in	our	
discussion	for	this	lab.	Such	a	term	is	important,	however,	when	considering	the	Sawyer-
Eliassen	circulation	in	the	vicinity	of	heavy	precipitation.	The	geostrophic	forcing	function	
is	the	sum	of	both	the	shearing	deformation	term	(
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QSH = 2γ[(∂Ug /∂y)(∂θ /∂x)])	and	the	
stretching	deformation	term	(

€ 

QST = 2γ[(∂Vg /∂y)(∂θ /∂y)])	and	the	winds	associated	with	the	
Sawyer-Eliassen	circulation	can	be	determined	directly	from	the	streamfunction,	
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ψ ,	such	
that	
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vag = −∂ψ /∂p	and	

€ 

ω = dp /dt = ∂ψ /∂y 	within	a	cross-sectional	plane	perpendicular	to	
the	frontal	boundary.	
	
Alright,	now	to	make	sense	of	all	that	ugly	math!	Ultimately,	the	way	the	above	equation	
works	is	similar	to	how	we’ve	looked	at	any	Laplacian	operator,	such	as	in	the	QG-omega	
equation.	For	example,	if	the	forcing	function	is	positive,	then	the	left	hand	side	must	be	
positive	as	well.	So,	if	the	sum	of	these	second	derivative	terms	is	positive,	then	

€ 

ψ 	must	be	
a	minimum!	The	opposite	holds	true	if	the	forcing	function	is	negative.	Once	we’ve	
identified	the	streamfunction	field,	we	can	easily	determine	the	winds	associated	with	that	
field	using	the	expressions	for	vag		and	

€ 

ω 	listed	above.	As	we	explored	in	class,	positive	



(negative)	values	for	the	forcing	correspond	to	frontogenesis	(frontolysis)	and	thermally	
direct	(indirect)	secondary	circulations.	
	
Lastly,	if	you	take	a	close	look	at	the	left-hand	side	of	the	equation,	you’ll	notice	three	terms	
in	parentheses.	These	coefficients	are	constants	for	each	point	on	the	globe	at	a	given	time	
and	represent	the	static	stability,	baroclinicity,	and	a	portion	of	the	absolute	vorticity	(if	
you	substitute	for	the	expression	for	M),	respectively.	Interestingly,	these	are	all	three	of	
the	characteristics	of	frontal	boundaries	that	we	discussed	earlier	in	the	semester!	
	
Successive	Over-Relaxation	
	
Now,	in	order	to	find	the	Sawyer-Eliassen	streamfunction,	one	must	solve	the	above	
equation	for	

€ 

ψ .	At	first	glance,	the	equation	looks	pretty	formidable	to	solve	by	hand!	
Luckily,	with	the	help	of	computers	and	centered	finite	differencing	techniques,	we	are	able	
to	solve	the	equation	rather	easily	and	painlessly	if	we	are	given	a	gridded	dataset	of	model	
data.	
	
If	you	think	all	the	way	back	to	the	first	weeks	of	your	dynamics	classes,	you	learned	that	
you	could	approximate	the	value	of	a	function	by	performing	a	Taylor	series	expansion	
(Don’t	worry,	I	won’t	make	you	do	it!).	After	some	algebra	and	mental	strife,	you	can	obtain	
the	following	expressions	for	the	first	and	second	derivatives	of	a	function	(see	Martin	pg.	
10-11):	
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f '(x0) ≈
f (x0 + Δx) − f (x0 − Δx)

2Δx

f ' '(x0) ≈
f (x0 + Δx) − 2 f (x0) + f (x0 − Δx)

(Δx)2
	

	
where	x0	is	the	point	at	which	the	derivative	is	being	taken	and	
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Δx 	is	the	distance	between	
x0	and	the	adjacent	points.	
	
It	is	then	possible	to	plug	in	these	expressions	for	each	of	the	derivatives	in	the	Sawyer-
Eliassen	Circulation	Equation.	This	allows	us	to	calculate	a	value	for	the	forcing	terms	at	
each	point	in	our	gridded	dataset,	as	well	as	each	of	the	coefficient	terms	in	the	parentheses	
on	the	left-hand	side	of	the	equation.	We	can	also	plug	in	the	approximation	for	a	second	
derivative	for	each	of	the	terms	with	
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ψ 	in	them.	
	
It	is	at	this	point	we	run	into	a	problem.	How	can	we	figure	out	the	value	of	these	second	
derivatives	if	we	don’t	know	what	psi	is!?	This	is	where	we	use	a	technique	called	
Successive	Over-Relaxation.	
	
The	first	step	is	to	take	the	form	of	the	Sawyer-Eliassen	Circulation	Equation	with	all	the	
derivative	approximations	substituted.	Then,	perform	some	algebra	to	rearrange	the	
equation	into	an	expression	for	
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ψ 	at	x0	(e.g.	f(x0))	in	terms	of	everything	else.	This	means	
there	will	be	some	terms	on	the	right-hand	side	that	include	the	value	of	

€ 

ψ 	at	other	points	
other	than	x0!	



Once	we	have	this	expression,	we	can	apply	the	successive	over-relaxation	technique.	
Successive	over-relaxation	is	an	iterative	technique	(e.g.	it	runs	over-and-over	until	a	
solution	is	obtained)	and,	as	part	of	the	solution	process,	gives	calculated	values	an	extra	
nudge	towards	the	final	solution	during	each	iteration.	This	is	done	so	that	the	solution	
process	is	completed	in	a	more	rapid	fashion	(over-relaxation).	
	
The	way	this	works	is	as	follows:	
	 1)	A	value	of	0	for	
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ψ 	is	initially	assigned	to	each	value	in	the	domain	for	which	you	
want	to	solve	the	equation.	On	the	boundaries	of	this	domain,	the	values	will	remain	0	
throughout	the	entire	process.	This	is	our	boundary	condition	that	permits	a	solution.	
	 2)	Then,	you	progress	through	each	point	one	at	a	time	on	the	interior	of	the	domain	
and	solve	your	expression	for	
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ψ 	at	x0	for	each	point.	Once	the	value	is	calculated,	you	use	
the	following	expression	to	“push”	your	value	for	
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ψ 	closer	to	a	final	solution:	
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ψ =ψold +α * (ψnew −ψold ) 	
	

where	the	updated	

€ 

ψ 	becomes	the	sum	of	the	old	

€ 

ψ 	value	and	the	product	of	an	over-
relaxation	coefficient	(

€ 

α )	with	the	difference	between	the	updated	

€ 

ψ 	value	and	the	old	

€ 

ψ 	
value.	
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α 	is	typically	between	1.0	and	2.0,	accelerating	the	process	of	convergence	to	a	
solution.	
	 3)	A	solution	is	typically	obtained	once	the	difference	between	the	calculated	

€ 

ψ 	
value	and	the	old	

€ 

ψ 	value	is	less	than	a	specified	amount	(usually	1%	of	the	magnitude	of	

€ 

ψ)	at	all	points	in	the	domain.	
	
The	Sawyer-Eliassen	Equation	Solver	
	
Now	that	we’ve	been	able	to	obtain	a	way	to	solve	the	Sawyer-Eliassen	Circulation	
Equation	using	iterative	techniques,	it	can	be	employed	in	numerous	situations	to	diagnose	
the	strength	and	sense	of	ageostrophic	secondary	circulations.	For	this	lab,	Andrew	
Winters	(former	452	TA	and	all-around	genius)	created	a	program	that	solves	the	Sawyer-
Eliassen	Circulation	Equation	within	any	cross	section	that	you	specify.	There	are	two	
scripts	you	will	need	to	download	from	Learn@UW	under	the	Lab13	Module:	
	
	 	 SEextract452.csh	
	 	 SEsolver452.py	
	

OR	
	

Copy	them	from	my	directory	using	the	following	syntax:	
		

cp	/ef5/raid6/class/fall11/mbreeden/Desktop/SEextract452.csh				.			
cp	/ef5/raid6/class/fall11/mbreeden/Desktop/SEsolver452.py				.			

	
(the	period	at	the	end	will	copy	the	files	to	your	present	working	directory)	

	



Here	is	the	process	that	you’ll	need	to	follow	to	solve	for	the	circulations:	
	 1)	Once	you	have	taken	a	cross	section,	exit	gdplot	and	open	up	gdcross	(do	not	type	
gpend).	(Hint:	When	you	are	taking	your	cross	section,	make	sure	it	is	perpendicular	as	
possible	to	the	thickness	contours	and	covers	a	large	latitudinal/longitudinal	distance.)	
	 2)	You’ll	see	a	parameter	called	CXSTNS	within	your	parameter	list	with	the	bounds	
of	the	cross	section	you’ve	selected.	
	 3)	Use	these	values	as	an	input	for	the	GAREA	in	the	SEextract452.csh	script	and	
ROUND	EACH	VALUE	TO	THE	NEAREST	WHOLE	NUMBER.	The	format	you	will	use	is	as	
follows:		

lowest	latitude;	westernmost	longitude;	highest	latitude;	easternmost	longitude	
	 ex:	16;-100;45;-70	
4)	Change	the	GDATTIM	and	GDFILE	to	the	correct	inputs.	
5)	Run	the	SEextract452.csh	script	after	making	it	executable	(this	will	create	text	

files	that	you	will	use	to	solve	the	Sawyer-Eliassen	equation	in	the	next	script).	
6)	Open	up	the	SEsolver452.py	script	in	gedit	
7)	Scroll	down	slightly	to	the	first	stop	sign,	as	indicated	in	the	script,	and	enter	in	

the	same	latitude	and	longitude	values	used	in	SEextract452.csh	where	specified.	
8)	Indicate	the	“tilt”	of	the	cross	section	you’ve	drawn.	If	the	cross	section	is	

oriented	from	NW	to	SE,	type	“westward”.	If	it’s	oriented	from	NE	to	SW	type	“eastward”.	
9)	Scroll	down	to	the	next	stop	sign	that	controls	the	forcing	function.	Select	which	

forcing	terms	to	include	in	the	solution	by	commenting	or	uncommenting	the	correct	lines.	
10)	Scroll	all	the	way	to	the	bottom	to	select	which	variables	you	want	to	plot	in	

your	solution	by	commenting	and	uncommenting	lines	within	that	section	of	the	script.	
11)	Save	everything	and	run	the	SEsolver452.py	script	after	making	it	executable.	
12)	You	should	see	a	plot	appear	after	the	script	is	run.	You	can	save	and	print	this	

off	if	you	so	choose.	
	

There	you	go!	In	about	5	minutes	you	will	have	solved	that	nasty	looking	equation	without	
even	breaking	a	sweat!	
	
One	last	tip	to	remember	when	looking	at	your	plot	of	streamfunction:	The	winds	
associated	with	the	circulation	flow	with	higher	streamfunction	values	to	their	left	in	this	
particular	plot,	per	the	relationship	discussed	earlier.	
	
Theoretical	Sawyer-Eliassen	Circulations	
	
As	we’ve	discussed	in	class,	the	structure	of	ageostrophic	circulations	in	a	straight	jet	
streak	with	no	geostrophic	temperature	advection	resembles	the	four-quadrant	model	with	
a	thermally	direct	circulation	in	the	jet	entrance	region	and	a	thermally	indirect	circulation	
in	the	jet	exit	region	(Panel	A).		
	
The	introduction	of	along-jet	geostrophic	temperature	advection,	however,	acts	to	shift	the	
location	of	these	circulations.	The	figure	below	shows	that,	within	a	regime	of	geostrophic	
cold	air	advection,	the	thermally	direct	(indirect)	circulation	is	shifted	towards	the	
equatorward	(poleward)	side	of	the	jet	such	that	descent	is	present	along	the	length	of	the	



jet	axis	(Panel	B).	This	is	extremely	favorable	for	the	production	of	upper-tropospheric	
fronts	via	tilting	frontogenesis.		
	
Within	a	regime	of	geostrophic	warm	air	advection,	the	thermally	direct	(indirect)	
circulation	is	shifted	towards	the	poleward	(equatorward)	side	of	the	jet,	such	that	ascent	
is	present	throughout	the	length	of	the	jet	axis	(Panel	C).	
	
These	theoretical	circulations,	which	result	as	the	sum	of	both	the	shearing	and	stretching	
deformation	forcing	terms,	will	be	helpful	to	remember	when	analyzing	the	resultant	
circulations	produced	from	the	Sawyer-Eliassen	solver.	
	
	
	
	
	
	
	


